我国电力大数据应用现状和在电力行业中的应用场景

2017-03-28 09:14:48 来源:环球表计 8

有一个流行的词语“云大物移”,指的是云计算、大数据、物联网和移动通信,在现代社会大数据是非常重要的资源。阿里巴巴创办人马云在演讲中曾提到,未来的时代将不是IT时代,而是DT时代,DT就是DataTechnology数据科技,显示出大数据在未来举足轻重的地位。

大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。

电力大数据由结构化数据和非结构化构成,随着智能电网建设和物联网的应用,非结构化数据呈现出快速增长的势头,其数量将大大超过结构化数据。电力大数据的特性满足大数据的五个特性,一是数据量大(Volume)、二是处理速度快(Velocity)、三是数据类型多(Variety)、四是价值大(Value)、五是精确性高(Veracity)。

电力大数据技术满足电力数据飞速增长,满足各专业工作需要,满足提高电力工业发展需要,服务经济发展需要。电力大数据技术包括:高性能计算、数据挖掘、统计分析、数据可视化等。

数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等等。

也就是通过将能源生产、消费数据与内部智能设备、客户信息、电力运行等数据结合,充分挖掘客户行为特征,提高能源需求预测准确性,发现电力消费规律,提升企业运营效率效益。

对于电网企业来说,这个模式能够提高企业经营决策中所需数据的广度与深度,增强对企业经营发展趋势的洞察力和前瞻性,有效支撑决策管理。

以智能家居产品为例,该模式既可为居民用户提供节能降费服务以及快捷便利的用户体验,也可对能源企业尤其是电力企业改善用户侧需求管理、减少发电装机等方面发挥作用。正在美国走向普及的智能电表也是一例,它具有电量结算功能,在整个电网范围内标识售电商和用户,可通过更换芯片更换售电商。该模式中,电网企业不一定具备产品研发优势,但可利用电力数据采集与分析方面的优势,既可通过与设备制造商合作改进用户需求侧管理,也可通过共同参与研发并在产品销售中获取收益。

目前,电力大数据应用场景主要在以下方面:

(1)规划—提升负荷预测能力。通过对大数据的分析,利用数据挖掘技术,更准确地掌握用电负荷的分布和变化规律,提高中长期负荷的预测准确度。

(2)建设—提升现场安全管理能力。对现场照片进行批量比对分析,利用分布式存储、并行计算、模式识别等技术,掌握施工现场的安全隐患,或者核查安全整改措施的落实情况。

(3)运行—提升新能源调度管理能力。利用机器学习、模式识别等多维分析预测技术,分析新能源的出力与风速、光照、温度等气象因素的关联关系,更准确地对新能源的发电能力进行预测和管理。

(4)检修—提升状态检修管理能力。研究消缺、检修、运行工况、气象条件等因素对设备状态的影响,以及设备运行的风险水平,利用并行计算等技术实现检修策略优化,指导状态检修的深入开展。

(5)营销—提升对用电行为的分析能力。扩展用电采集的范围和频次,利用聚类模型等挖掘手段,开展对用电行为特征的深入分析,并实施区别化的用户管理策略。

(6)运监—提升业务关联分析能力。利用流式计算、可视化和并行处理等技术,实现全方位在线监测、分析、计算,通过聚类和模式识别技术,解决对跨业务的关联分析、数据因子分析、数据诊断规则和算法,提高数据质量监控和治理。

(7)客服—提升服务效率。对客服录音进行实时监管,利用模式识别、机器学习等技术,对热点问题的服务资源进行优化分配,提升交互水平。

原标题:我国电力大数据的应用前景